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1. I N T R O D U C T I O N  

In the classical kinetic theory of rarefied gases, ~1) the assumption is made 
that molecules possess only translational kinetic energy and that the proper 
volume of the molecules is negligible in comparison with the volume 
occupied by the gas. These assumptions imply that the gas so described is 
monatomic  and dilute. 

If the first assumption is abandoned, it is necessary to introduce new 
variables which describe the internal degrees of freedom. The treatment 
then becomes very complicated; the simplest case is that of molecules 
described as rigid spheres perfectly rough and perfectly elastic. This model 
was first suggested by Bryan ~2) in 1894. 

Concerning the second assumption, relatively simple mathematics is 
obtained by assuming that the molecules are rigid spheres and that the 
density effects are correctly described by taking into account the finite 
separation between the centers of the molecules at collision and the reduc- 
tion of the volume where the center of a molecule may be because of the 
finite volume occupied by the other molecules. This kind of model was 
proposed by Enskog (3) in 1921. Recently the Enskog model was revised by 
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some authors (4 6) in order to obtain a more coherent theory. The revised 
Enskog equation was shown (7) to admit an H theorem analogous to the 
usual one valid in the case of rarefied gases. 

An Enskog equation for a gas of rough spheres was introduced in 
1966 ~8) in order to describe a dense gas of polyatomic molecules. 

In the present paper  the revised Enskog equation for rough spheres is 
considered; the H theorem and the conservation equations are discussed. In 
particular, the stress tensor is shown to be nonsymmetric. 

2. D Y N A M I C S  OF A COLLIS ION 

The Bryan model, (2'9) according to which a molecule is a sphere whose 
mass center coincides with the geometrical center and the corresponding 
inertial ellipsoid is a sphere, possesses an advantage over all other models 
of rotating molecules in that no variables are explicitly required to specify 
its orientation in space. 

The statement that the molecules are perfectly elastic and perfectly 
rough is to be interpreted as follows. When two molecules collide, the 
points which come into contact will not in general possess the same 
velocity. It is supposed that the two spheres grip each other without 
slipping; first each sphere is strained by the other, and then the strain 
energy is reconverted into kinetic energy of translation and rotation, no 
energy being lost; the effect is that the relative velocity of the spheres at 
their point of contact is reversed by the impact. 

Let m and a be, respectively, the mass and the diameter of a molecule; 
let I be the moment  of inertia about  the diameter and let k be defined by 

k = 4 I / m a  2 (2.1) 

Let us denote by vl, v2, c%, o~ 2 the center-of-mass velocities and the 
t t t / angular velocities of two molecules before collision, and by Vl, v2, ml, o)2 

the velocities after collision. Let ~ be the unit vector in the direction of the 
line from the center of the first molecule to that of the second at collision. 
Let V denote the relative velocity before impact of the points of the spheres 
which come into contact: 

V = v 2 + �89 A 0~ 2 - t I -Ji- �89 A 17.O 1 (2.2) 

Since the relative velocity is reversed at collision, we have 

t _ _  t p t V = -v2  �89 A {.0 2 - t - V  1 - - � 8 9  A O) 1 (2.3) 



Kinetic Theory of a Dense Gas 657 

The linear momentum and angular momentum conservation equations give 

vl =v~ + {kv + ~(~. v)}/(k + 1) 

v~=v 2 -  {kV+~(~, 'V)}/(k+ l)  

0)'t = 0)1+ 2(~:/x V)/a(k+ 1) 

0)~ = 0) 2 + 2(~/x V)/a(k + 1 ) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

Inserting the value of V given by Eq. (2.2), we find from Eqs. (2.4)-(2.7) 
the final velocities as a function of the initial velocities. It is easy to verify 
that kinetic energy is conserved. Because of Eq. (2.3), Eqs. (2.4)-(2.7) also 
give the initial velocities as functions of the final ones. 

In the kinetic theory for smooth molecules, use is made of the fact that 
in correspondence with every collision in which the initial and final 
velocities are vl, v2, and v'l, v~ and the direction of the apsidal line is given 
by the unit vector ~, there is an inverse collision such that the initial and 
final velocities are v], v; and vl, v2 and the direction of the apsidal line is 
given by -~ .  For  the rough spheres no such inverse encounter exists, as 
can be seen from (2.2)-(2.7). 

It will be useful in the following to introduce the symbols v*, v*, 0)*, 
0)* in order to denote the initial velocities in a collision of apsidal unit 
vector - e  leading to the final velocities Vl, v2, o)1, 0)2. The values of 
v*, v~, 0)*, 0)~' are easily obtained as functions of Vx, v2, 0)~, 0)2, by using 
Eqs. (2.2)-(2.7). 

If we introduce 

V12 = Vl - -  V2, V/12 = V'I -- V~, V*2 = V* -- V* (2.8) 

we easily obtain 

! 
V 1 2 " I ~ =  - - V 1 2 " I ~ =  - -u  ~ (2.9) 

Moreover, 

dv 1 dr2 d0)1 d0)2 = dv'l dv~ d0)'1 d0)~ = dr3 dv* do)* do)* (2.10) 

3. T H E  B A S I C  E Q U A T I O N  

Enskog pictured a dense gas as a collection of hard spheres colliding 
with each other. The difference between a dense and a dilute gas described 
by the traditional Boltzmann equation essentially lies in the following: 
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(a) The centers of the molecules are not assumed to coincide at a 
collision and the fact that they are at a distance of a sphere diameter is 
taken into account in the collision term. 

(b) Although the triple collisions of hard spheres are a set of zero 
measure in the set of all collisions, the fact that two colliding molecules are 
close to other molecules produces a mofidication in the collision rate. In 
fact, the two-particle distribution function cannot be taken equal to the 
product of two one-particle distribution functions any longer. 

If we repeat Enskog's procedure for a gas of hard, rough spheres, we 
are led to 

~ f l .  afi jE 6qfl bY 1 �9 F" - ( f , ,  f2)  (3.1) 

where f l ( r l ,  vl, r t) is the one-particle distribution function, rl and t are, 
respectively, particle position and time, and F is the external force per unit 
mass, assumed to be such that (~/~Vl)" F = 0; the collision operator j E  is 
defined by 

f l )  = a 2 f dr2 do2 d2,~(I; �9 v12) O(~;" V12 ) J E ( f  1 , 

• [g2(rl,  r l - a e ) f l ( r l ,  v*, c0*, t) 

• f l ( r l  --a~;, v*, co*, t ) - -  g2(r l ,  r I +a~;)  

• f l ( r l ,  v l , o l ,  t ) f l ( r l + a e ,  vz, Oz, t)] (3.2) 

where O(x) is the Heaviside function, and g2 is a functional of the local 
density to be defined below. In the case of the original Enskog equation ~3'9) 
g2 is the equilibrium pair correlation function, calculated for the local 
density at point (r 1+r2)/2. More recent investigations (4 7) have slightly 
modified this prescription, retaining the approximation that the 
correlations in the system are due to the excluded volume between the 
spheres, the correlations between velocities being neglected. The modified 
equation was shown (6) to be superior to the original Enskog equation 
because it leads to transport coefficients consistent with the Onsager 
relations. Another important result is the proof of an H-theorem for the 
dense gas of smooth spheres in the case of the modified equation, (7~ while 
no proof exists for the original Enskog equation. In order to define g2 and 
prove the H theorem for the rough-sphere gas, we must extend to this case 
some definition introduced (7) for smooth spheres. There is no rigorous 
derivation of the Enskog or modified Enskog equation. Here we consider 
the particular form adopted for the collision term as an axiom on which to 
base the mathematical theory. ~176 
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It is assumed that, at all times, the reduced distribution functions 
of the system can be calculated from the following (grand canonical) 
distribution function 

N N 

P N = ( 1 / u ! )  l--[ o ~ j l ~ w ~ ( t ) / S ( t ) ,  U=0,1 ,2 , . . .  (3.3) 
i > j = l  i = 1  

where the normalization factor E(t) is given by 

Z ( t ) =  -~. dFU 1-I o ~ I - I  w i ( t )  (3.4) 
N = O  " i > j = l  i = i  

and the following notations have been introduced: 

Oij = O ( r i j -  a), r~ = I r i -  rjl (3.5) 

W,( t )  = W(ri, vi, o i ;  t) (3.6) 

dF  u - n  = dr,  + 1 "'" drN dvn + 1 "'" dvx  d o ,  + 1 "'" d o n  (3.7) 

Conventionally, empty products in Eq. (3.4) are replaced by 1 and no 
integration is performed if dE N reduces to dF  ~ 

We remark that Eq. (3.3) may be not valid in a set of zero measure, 
which includes the postcollisional states. This circumstance is irrelevant for 
the equations to be used in this paper. 

The function W generates the reduced particle distribution functions 
according to the rule 

oo N! 
L(rl . . . . .  r . , v l  . . . . .  v . , o l  . . . . .  r  =, ( N - n ) !  o dFN-nlON (3,8) u-= 

In the case of a rarefied gas governed by the Boltzmann equation, W 
reduces to f~, while here there is a functional relation between W and/ '1 
given by Eq. (3.8) with n = 1, 

A ( r l ,  v,,  {.01 ; t )  ~ f l ( r  I I W(t)) 

It is convenient to define the quantity 

(3.9) 

{N~_ - 1 f " " } f  bn(rl ..... rn lz , ( t ) )=  ( N - n ) !  dFN " ~ O~ 1-1 Wi Z( t )  
n i > j = l  i = n + l  

(3.1o) 
where 

zl(r; t) = f dv d o  W(r, v, o;  t) 

We remark that b o = ~. 

(3.11) 
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We can rewrite Eq. (3.9) as 

L(r~, u O1 ; /') = W(r l ,  u ~ ; [) bl(r 11Zl(t)) (3.12) 

and by integrating over v 1, o) 1 we find a relation between Zl and the local 
density n(r, t) defined by 

n(r, t) = f fl(r, v, ,o; t) dv do (3.13) 

The relation under consideration gives n in terms of z l, 

n(r  1 ; t) = zx(r 1 ; t) b l ( r  1 J Zx(t))  (3 .14)  

This equation is the same as the expansion of the local equilibrium density 
in terms of Zl for a gas of hard spheres in an external field, discussed at 
length in the literature. (") It is known, in particular, that this relation can 
be inverted [-see Eq. (5.6) of ref. 11 ] to yield a positive z~ for an arbitrary 
positive density n(r, t). Hence Zl can be considered functionally determined 
in terms of n, 

zl(r; t) = zl(rln(t)) (3.15) 

and Eq. (3.12) immediately delivers W in terms off1. 
In the case n = 2 ,  Eq. (3.8) gives 

f2(rl, r2, vl, %, o)1, o~2; t) 

= W(rl, vl, 0~1; t) W(r2, v2, O~z;t) b2(rl, r21zl(t)) (3.16) 

Equations (3.12) and (3.16) give 

f2(rl, r2, u u 0}1, r t) 

=g2(rl, r21n(t) ) f l (r l ,v l ,  o~l;t)f~(r2, v2, o~2;t ) (3.17) 

where g2 is defined by 

b2(rl, r2 I Zx(t)) 
g2(r~, r2 In(t)) = (3.18) 

bl(rl I zl(t)) bl(r21Zx(t)) 

and g2 is written as a functional of the density because of Eq. (3.15). 

4. THE  H T H E O R E M  

An H theorem has been recently proved by US (12) for a rarefied 
polyatomic gas, of which the rarefied gas of rough spheres is a particular 
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case. An H theorem has been proved by R6sibois ~7~ for the revised Enskog 
equation in the case of smooth spheres. R6sibois has given a definition of 
the H function that we extend to the case of rough spheres, 

H ( t ) =  ~ f dFg pN(t) ln[N! pN(t)] (4.1) 
N = 0  

It is possible to show that 

g(t) = gk(t) + HV(t) (4.2) 

where the "kinetic" part H k is 

Hk(t)=fdrldvld011f1(rL, vl,011, t)[lnft(rl,Vl,011, t ) - l ]  (4.3) 

and the "potential" part is 

HV(t) = - I n  Z(t) + f drt n(r~, t)[1 - I n  b~(r~ I zl)]  (4.4) 

It is easy to verify that in the limit of a rarefied gas H reduces to the well- 
known Boltzmann H function. We shall study the time derivative of H. 
Concerning H ~ we have the same result as in the case of smooth spheres, 
that is, (7) 

O,H~(t) = -I(t) (4.5) 
where 

I(t) = r | drl dr2 r 1---~2 O ( r 1 2  - -  a) g2(rl, r2 [ n(t)) 
o a 

x n(r2, t) f dr1 do11Vxfl(rl, Vl, o11, t) (4.6) 

For the kinetic part we have, under the usual assumption concerning the 
behavior at large speeds and distances, 

= f dr1 dr1 d011 (In fl) jz(f~, f~) (4.7) •,Hk(t) 

We introduce the notations 

F , =  (ri, vi, 01i), Fi* - ( r .  v*, 01"), F / =  (ri, v~, 01;) (4.8) 

dFi=-dridvid01i, dFi* =-dridv* d01", dF/ =-dridv ~ d01~ (4.9) 

822/53/3-4-8 



662 Cercignani and Lampis 

Equations (4.7) and (3.2) give 

(, 
t3tHk(t) = a 2 j dF2 d2e [ln f l (F1,  t)](t, ,  v12) 

• O(t," vt2) g2(rl, r21 n( t ) ) [6 ( r~ : -  at,) 

• f~(F*, t ) f~(F*,  t ) - b ( r l : + a e ) f t ( F ~ ,  t ) f l (F2,  t)] dF1 (4.10) 

where, since no inverse collision exists, it is not possible to replace u ~o* 
! (.,0 t" by v,  At this point we use F*,  F*,  and t,* - t ,  as new integration 

variables in the term involving 6(r~2- at,). If Eqs. (2.9) and (2.10) are taken 
into account, the latter term becomes 

f dFl* dE* d2e * [ln f l (F1,  t)](E*, v~'2) 0 2 

x O(t,*-v*2)g2(r 1, r2)6(r12+at,*)f~(P1*, t ) f l (Ff f ,  t) (4.11) 

We recall that v, t~ are the final velocities in the collision with initial 
velocities v*, co* and apsidal unit vector t,*, while v', co' are the final 
velocities arising from v, o~, e. Accordingly, changing the variable names in 
(4.11 ) gives 

�9 2 , f l (F t ,  t) g 
t3,Hk(t) = --a 2 J dF1 dF2 a e m ( t ,  . u O(t," VI2) 

f , (F1, t) 

• g2(r1,r2)b(r12+at,)fl(F1, t ) f l (F2,  t) (4.12) 

From this point on the proof is similar to the case of smooth spheres. 
In Eq. (4.12) we exchange variables F 1 and F 2 and at the same time 

we use - ~  as a new integration variable. 
Because of Eqs. (2.2) and (2.4)-(2.7), V'l and t~  become v~ and r and 

Eq. (4.12) takes the form 

c3 tHk(t) = --a 2 f dF1 dff 2 d2 ~ lnf l ( / '2 ,  t) (I;" u O(t," u 
f~(F~, t) 

x g2(rl, r2)b(r12+at,) f t(Fl ,  t ) f l (F2,  t) (4.13) 

Equations (4.12) and (4.13) together provide a further expression for the 
time derivative of Hk: 

a 2 f lnf l (F1,  t ) f , (F2 t) t ~ t H k ( t ) = - - ' ~  dF ldF2d2e  F '  ' (t, * u O ( e  " u 
f l (  1, t ) f l (F2,  t) 

x g2(rl, r2) 6(r12 + at.) f l(F1, t) f l(F2, t) (4.14) 
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Making use of the inequality 

x ( l n x - l n y ) > ~ x - y ,  (x, y ) > 0  (4.15) 

where the equality sign holds only when x = y, we obtain 

la2 f dFl dF2 d2e (e.. u O( ~~ u OtHk(t) 

• [L(r;, t)A(r~, t)-fl(rX, t)A(r2, t)] 

x g2(rl, r2) 3(rxz + ae) (4.16) 

In the first term of Eq. (4.16) we use F~ and F;  as new integration variables 
and then drop the primes. 

Since O( - e ,  v12) + O(e, vt2) = 1, Eq. (4.16) becomes 

<~ -�89 2 f dF 1 d_F 2 d2e (e. v12 ) ~?,Hk(t) 

• f l ( r , ,  t )A(r2 ,  t) g2(rl, r2) 6(r12 + ae) (4.17) 

Performing the integral over e and exploiting the properties of the Dirac 3 
function gives 

O,Hk(t) <~ f dr1 dr2 g2(rl, r2) (~(r12 -- a) r12"vx2A(F1)L(F2) (4.18) 

Then we have 

O,Hk <<. I(t) (4.19) 

Equations (4.5) and (4.19) lead to the following result: 

c3,H.%< 0 (4.20) 

i.e., to the H theorem for a dense gas of rough spheres. In the rarefied case 
the proof reduces essentially to that of Condiffet aL ~3) 

5. T H E  C O N S E R V A T I O N  E Q U A T I O N S  

Let us multiply Eq. (3.1) by a function ~b=q~(vl, o~1) and integrate 
over v 1 and co x. The left-hand side gives 

c3nq~ 0 ( 0~b "~Vl) (5.1) 
(~t t- ~ l r  1 . n~u  - /'/ u ~ ~ l r l  "~-F a ~  



Cercignani and Lampis 

0p + ~ .  
-~- #r (pu)=0  (5.8) 

where 

p(r, t ) =  mn(r, t) 

p(r, t) u(r, t) = f mvf,(r ,  7, t) d7 

(5.9) 

(5.10) 

664 

where for any 0 

n(r, t) q~(r, t) = f 0(vl ,  r 1 , r) f (v l ,  r r, t) dv 1 d o  1 (5.2) 

We introduce the notations 

7 i -  (vi, oi), 7~*- (v~*, o~*), 7;=- (v;, o;) (5.3) 

dTi = dvi doi ,  d T * =  dv* do* ,  dT~ = dr; do~ (5.4) 

the right-hand side gives 

n A~b- f q~(]~l)JE(fl, fl)d71 

= a 2 f dT1 dT2 ~b(71) dZe (~" v12) O(~" v12 ) 

• [g2(rl,  r l - a ~ ) f l ( r l ,  7 * ) L ( r l - a ~ ,  7*) 

- gz(rl,r~+a~)f~(rl,71)f~(r1+a~,72)] (5.5) 

In the first term of (5.5) we use 7* and ~ * = - ~  as new integration 
variables. Keeping in mind Eqs. (2.9) and (2.10), we obtain 

aZf dT* dT* d2g * q~(71)(~;*" u O( g*~ v~2) 

xg2(rl, r l+a~*)fl(rl ,7*)fl(rl+a~.*,7* ) (5.6) 

We replace ?*, 7", ~* with 71, 72, c; then 71 must be replaced by 7'l- 
Equations (5.5) and (5.6) give 

n A~b = a 2 f dT~ d72 d2e [-~(7'1) - -  ~(71) ] (  ~" u O(~ "u 

• [-g2(rl, r~ + a~)f~(rl ,  ~)f~(r~ +ae ,  72)] (5.7) 

We remark that Eq. (5.7) for ~b(7)= 1 becomes A~b = 0 and then, together 
with Eq. (5.1), provides the continuity equation 
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In Eq. (5.7) let us exchange 71 and 72 and use - e  as a new integration 
variable, we obtain 

n A~b = a 2 f d71 d?2 d2e [~b(7~) - V12) o ( e .  V12) 

• g2(rl, r l -  a~ ) f l ( r l ,  ~ 2 ) f 1 ( r l - a e ,  71) (5.11) 

We assume now that the function ~b is a collision invariant, i.e., satisfies the 
equation 

~b(7i) - ~b(Tz) = - [~b(7',) - ~b(7~ )] (5.12) 

This wll occur for the following choices of ~b: fbi=mv i ( i=  1, 2, 3) or ~b 4 = 
�89189 the case (~4+i=eijkrjmvk+Iooi ( i = 1 , 2 ,  3), where euk is the 
permutation symbol, is different because ~b4 +i depends also on r and will be 
dealt with later. 

Equations (5.12), (5.11), and (5.7) give 

n A(J = �89 2 f d71 d72 d2e [~b(7'1) - ~(71)](~" u O(~. u 

• [g2(rl,  rl + a~;) f l ( r l ,  71) f l ( r l  + ae, 72) 

- gz(rl,  r l -  a~:)fl(rl ,  ~ 2 ) f l ( r l - a ~ ,  71)] (5.13) 

It is easy to see that Eq. (5.13) in the limiting case of a negligible molecular 
diameter ( a - *0 )  provides nA(b=O and therefore, with Eq.(5.1), the 
well-known balance equations for mass, linear momentum, and energy. In 
the case of a dense gas, (5.13) for ~br does not vanish and then the 
balance equations do not take an obviously conservative form. This is due 
to the fact that collisions transfer instantaneously momentum and energy 
from one point to the other. It is remarkable, however, as we are going to 
prove, that it is possible to reestabilish the conservative form by imagining 
that this nonlocal effect is mediated through local transfers of linear 
momentum and energy. To this aim, we shall introduce, in the contribution 
of the collision term to the balance equations, a convenient representation 
which calls into play the intermediate positions between the centers of two 
molecules at contact (positions that cannot be occupied by the centers 
themselves). 

Since g2(r~, r2) is a symmetric function, Eq. (5.13) can be rewritten as 
follows: 

a 2 
3~ =T f d~ d~2 d2~ [~,(~'~)- ~,(~,1)](~" v,~) o(~. Vl~) n 

x dc~ ~ [g2(r I - (a - c~)~, rl + ~ )  

• A ( r l -  (a-~)~: ,  ~1)fl(r l  q - ~ ,  ~2)] (5.14) 
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We define 

Then we get 

Now, since 
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0 
- - = t - - -  (5.16) 
&~ Op 

a2 f fo' nA(~=-~ d?xd72d2e da [~b(Ti)-~,b(71) ] 

X (t~165 0(I}','u p [ g 2 ( r l + P - - a t ,  r l + p )  

x f~(r~ + p -  aa, Yl)f~(r~ + p, Y2)] (5.17) 

0 
t "~-fi [g2(rl + p -  at, rl + p) f~(rl + p -  at, 71) f l ( r l  + p, 72)] 

= r ' ~ r  1 [g2(rl + P -  at,  rl + P) 

x f l ( r  I + p - -a t ,  71)fl(rl  + p, Y2)] (5.18) 

and since we are at present considering collision invariants independent of 
rl,  we obtain 

a2 f Io ~ 63 "-2 dT1 472428 d~ [~(?~1)-~(71)] n A4 = Or---~ 

x (e'v12) O(r'Vl2) e[g2(rl + o-a t ,  r~ + O) 

x f l ( r~  + 0 - a t ,  7 ,)  A ( r ,  + o, 72)] (5.19) 

It is particularly interesting to consider the cases of Oi=mvi and ~4= 
1 2 1 2 ~mv + ~Ico , which provide the balance equations for the linear momentum 
and energy. In the case of ~bi, Eq. (5.19) gives 

0 
. . . .  o r (5.20) n Amy cgr, 

where the tensor pC is 

a2 f fo pc_ __ -~m d7, d72d2e de (v'l - vl) e(t" v12 ) 

x O( t ' v l2 ) [g2 ( r l+  0 - a a ,  r, +0 )  

x f ( r  1 + p - a e ,  71) f ( r1+p,  72)] (5.21) 

p = c~t, ~ = hP[ (5 .15)  
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and the balance equation for linear momentum is 

& (pu) + �9 (puu + p) = pF  

where 

p = p k + p C  

and pk is the kinetic contribution to the stress tensor, 

pk(r 1, t) = m f eefl(rl, y, t) d 7 

667 

(5.22) 

(5.23) 

(5.24) 

0 0 
/ / / 1 r  --~rjUip~.--c3zs} (5.27) 

a 2 

f d'fl dy 2 
$ c - -  d 2 ~  

2 

m r2 2 

x g2(r~+p-a~,r l+p) f l ( r l+p-a~,y~) f~(rm+p,  72) (5.28) 

The balance equation for energy is 

1 2 1 z e~ ~ I P ( ~ U 2 + ~ I o ) o + e ) ] +  ~----[PUj(luZ+~I~oo+ 
~? t Or j } 

u,(pw + p)~) + (s) k. + s~)] = pFjv] (5.29) + 
A 

(5.26) 

where 

Thus, (5.19) gives 

�89 

Here 

e = v - u (5.25) 

pC may be interpreted as the contribution to the stress tensor due to the 
intermolecular collisions. We remark that in the case of rough spheres, 
v'l - v l  is given by Eqs. (2.2) and (2.4), so that pC is not symmetric. In the 
case of smooth spheres, v ~ -  vl = - e0 ; "  v12) and pC becomes symmetric. 

Let us consider the case ~b = ~'4- If e ' =  v ' - u ,  it follows that 
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where ~0 is the average value of o, and the internal energy e and the vector 
s ~ are defined by 

p(r, t) e(r, t)  = f m c  2 + I ( ~ -  too) 2 f(r ,  7, t) d7 (5.30) 

1 2 

It is tempting to identify s = sk+ s c as the heat flux, but this identification 
turns out to be false, as we shall see. 

Let us now consider the functions 

q~4+ i(r, v, 0}) : e i j ~ r j m v k  + Io~i, 

i.e., the components of the vector 

i = 1 , 2 , 3  

M(r, v, o~)=mr A v+Io~ (5.32) 

which is a collision invariant corresponding to the conservation of the 
angular momentum. M depends on r and therefore we treat this case 
separately. Multiplying Eq. (3.1) by M(rl ,  vl, ~ )  and integrating over vl 
and ~ , ,  we obtain 

where 

+__0. 
~t [pr/x u+nloJ0]  0r [u(pr 

= p r / x  F + n A M  

^ u+nI0~0)+r /x  pk+ Kk] 

K k = nlU-~ 

is the kinetic contribution to the stress-couple tensor and 

n A M =  f (mr I /x va + I ~ 1 )  J E ( f  1 , A) dT1 
d 

(5.33) 

(5.34) 

(5.35) 

Manipulations similar to those used in the preceding cases give 

n A M = �89 2 f d71 d72 d 28 s V12O( ~~ V12) 

• { (mr  1 A v ~ + I o ' l - m r l / x  V l - / ~ O l )  

• g2( r l ,  rl + ae) f ( r , ,  71)f(rl  +a~,  72) 

--  [-mr I /x v~ + I o ' 1 - -  (mr  I A vl + I o l )  

- rna~ ^ (v'l - v , ) ]  g2(rl, r l -  a e ) f ( r l ,  7 2 ) f ( r , - a ~ ,  7,)} (5.36) 
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which can be rewritten as 

n A M = ~ f  d71d72d2~'v126)(~'v12) 

x dc~ {g2(rl - ( a -  ~)~:, rl + ~ )  

x f ( r l -  ( a - ~ ) ~ ,  71)f(rl  +c~,  72)fro(r1- ( a -  ~)~)/x v'l 

+ I~ i  - re(r1 - (a - ~)~) A vl - I~1] } (5.37) 

By means of the above procedure, we obtain 

0 a 2 f n d M = c q r a ' -  ~- d71d72d2edoce,'v12 

x O(e.Vl2) ag2(ri + P - a t ,  r l +  p) 

x f ( r  1+ p - a t ,  71)f(r~ + p, 72)[mrl/x (v' l - v  1) 

+ m(p-ae)/x (v ' l -Vl )+  I(r  (5.38) 

Therefore we can write 
0 

/x pC)__~._0. K c (5.39) n A M =  -~r--~. (rl 
or1 

where 

K c = - - � 89  2 d71 d~2 d2e d~ e" vx2 

X {~(~" u ~;g2(rl + P -- ae, r I + p) 

• f ( r l  + p - -a t ,  71)f(rl  + p, 72) 

x [m(p--ac)  /x (v ' l - -v l )+I(co ' l - -o l ) ]  (5.40) 

is the collisional contribution to the stress-couple tensor. 
Accordingly, Eq. (5.33) may be written as follows: 

~ ( p r  r /x u + n I ~ o ) + ~ r  r .  [u(pr/x u+nI~oo)+r /x  P +  K] = p r / x  F (5.41) 

where 

K = Kk+ K c (5.42) 

is the total stress-couple tensor. 
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We can now return to the energy equation to interpret the vectors s. 
By separating o into its average Oo and the deviation from the average 

~'~ = (l) - -  0)0, ~ t  1 = 0 '  1 --(.0 0 (5.43) 

it is easy to show that 

S k = qk + Kko0  (5.44) 

s c = q~ + Rco0 (5.45) 

where 

;c( mc2 1o2, = +-~L ) f ( r ,  7, t)d7 (5.46) 

q~= - - ~  dyld72d2e d~ 

• L ~ 1 c2 ~ -~1 s s 11Ar-Z 1( 1 - -  ~(~" V12) 0 ( ~  " V12) 

x g2(ra+p--ac, r l+p) f ( r l+p- -ac ,  71)fl(ri+p, 72) (5.47) 

are the kinetic and collisional contributions to the heat flux and 

~c= la2 f dy I dy2d2e fo d~xI(o~;_Ol)F.(F.u163165 

x g2(rl + p - a~, rl + p) f l ( r l  + p - ae, 71) f l ( r l  + P, 72) (5.48) 

Accordingly, the energy equation can be rewritten as follows: 

~t Ip  (~  2 1 u §247 

c~ F f l  2 1 ) 
+-~rjkPU, k~ u +'~ 1r176 +e .  + u'(pS + PJ') 

+ ~~ +/(~l) + (q~ + q;)]  = pFjvj (5.49) 

A surprising feature of this equation is the appearance of the tensor I~ c in 
place K c. The two differ by a term related to instantaneous momentum 
transfer from one center of mass to the other in a collision. The rate of 
work per unit surface of normal unit vector n is thus different from the rate 
of work of the stresses n.  (pu) plus that of the stress-couples n. (Ko~o), as 
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one would expect from a naive analogy with solid bodies and as is indeed 
assumed in most work on polar continua. 

As early as 1962, Toupin (~4~ remarked that the traditional assumption 
on the surface power imposes an unnatural restriction and suggested the 
possibility of introducing an extra rate of energy supply, which later Dunn 
and Serrin (~5) reconsidered under the name of interstitial working. This 
seems to be necessary if we want to preserve the classical structure of con- 
tinuum mechanics in the presence of transfers of momentum at a distance, 
which render less intuitive, if not meaningless, the usual concepts of stress 
and heat flux. In our case n" (Ko0) is the working of the stress couples and 
n. (K - f() 00 is the interstitial working. 

6. CONCLUDING REMARKS 

The kinetic theory of dense polyatomic gases has been scarcely 
studied. The revised Enskog equation for rough spheres appears to have 
several interesting properties and to deserve a more systematic study. In 
this paper the balance equations have been studied and several useful 
properties obtained. 

Our results should be of interest not only for gases, but also for 
granular materials where kinetic equations for spherical particles have been 
recently used to describe the behavior of such materials at high shear 
rates.(~6,17) 

It was pointed out to us that an H theorem for the standard Enskog 
equation was given by Grmela and Garcia-Colin (18/ (see also Karkheck 
and Stell(~9)). We do not understand this result, which leads to an H 
function that in equilibrium does not coincide with the opposite of entropy. 
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